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Modelling the outbreak of an influenza strain in a popula-
tion with di↵erent belief groups

Antunes Morgado, Nicolas; Gundersen, Benjamin;
Hühnerbein, Jannes; Siebenaller, Julius

Abstract

In this thesis, the outbreak of an influenza strain is modelled for a community that
consists of two belief groups regarding vaccination (’Trusters’ and ’Skepticals’ with
di↵erent costs of vaccination). Both groups form sub-groups of the community and
are assumed to resemble small-world networks, which are further combined.

Relying on an SIVR-model, the spread of the disease is according to the infec-
tion rate and the decisions of the individual agents. The agents follow a simple
game theoretical model in order to arrive at a decision to vaccinate, taking into
account the forecast for a certain period, which is updated regularly.

The main emphasis is being placed on investigating di↵erent distributions of
the communities and the e↵ect this has on the disease outbreak. Besides, the
outcomes of changing the agent-specific parameters, costs of vaccination, costs of
infection and time-horizon, are analysed as well. The results are in line with and
confirm previous research. But especially, it is obtained that uptake levels are more
sensitive to the share of trusters in the community, compared to the cost-ratios of
the individual communities.
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1 Introduction and Motivations

Several times in human history epidemics have left areas and sometimes entire
civilisations in total devastation. Only with the rise of modern medicine and
especially widely available vaccines the development of large and complex societies
of today was made possible.

The characteristics of the flu with its almost yearly outbreaks and frequent
mutations - making a general vaccine impossible to develop - yield an interesting
game theoretical problem. While vaccinations are quickly developed, the uptake
levels of vaccines is crucial regarding the spread and containment of an outbreak.
With ’anti-vaccination’ groups becoming more and more popular and diseases
thought to be extinct reappearing even in Central Europe, the e↵ects on disease
outbreaks are gaining relevance and needs to be analysed in more detail.

Previous works in epidemiology have developed models to capture disease dy-
namics in various population structures. While another strand of literature has
turned to a game-theoretical perspective to extensively analyse the decision process
of an individual on the uptake of vaccination.

In this thesis, the outbreak of an influenza strain is modelled for a community
that consists of two belief groups regarding vaccination. One is trusting the ef-
fectiveness and safety of vaccines and assumes a lower cost to vaccination. The
other group is skeptical towards vaccinations. Both groups form sub-groups of the
community and are assumed to resemble small-world networks. These networks
are further combined to form the whole population. Relying on an SIVR-model,
the spread of the disease is according to the infection rate and the decisions of
the individual agents. The agents follow a simple game theoretical model in order
to arrive at a decision to vaccinate, taken into account the forecast for a certain
period. The decision is update regularly. The time-horizon taken into account
is for one single flu season. The main emphasis is being placed on investigating
di↵erent distributions of the communities and the e↵ect this has on the disease
outbreak. Besides, the outcomes of changing the agent-specific parameters, costs
of vaccination, costs of infection and time-horizon, are analysed as well. The re-
sults are in line with and confirm previous research. Of particular interest is the
comparison of the e↵ect of the share of trusters to the di↵erent cost-ratios in the
two belief groups.

The thesis is organised as follows: Section 2 reviews the relevant literature on
modelling of infectious diseases and the game theoretical analysis of the vaccination
decision. Section 3 describes the model, including epidemic dynamics, agent policy
and network structure. The initial setup and baseline parameters are provided
inSection 4 and Section 5 deals with the implementation. Section 6 describes the
results with a discussion of the findings. Section 7 concludes.
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2 Literature Review

The following provides a small review of the literature concerning (1) the modelling
of infectious diseases with respect to population structures and subpopulations
as well as disease spreading. And (2) a game theoretical analysis regarding the
vaccination decisions of individuals.

The work of Kermack and McKendrick (1927) is pivotal in the field of epidemi-
ology, particularly concerning the spread of an infectious disease in a population.
Susceptible persons get infected based on the transmission rate of the disease and
the size of the infectious subpopulation. They finally recover or die from the
disease and hence join and stay in the recovered pool. This and subsequent com-
partmental models are commonly referred to as SIR-models of infectious diseases.
As outlined in Earn et al. (2008), respectively in Dadlani (2013) or Sun et al.
(2016), there exist various adaptations of the SIR-compartmental-model to either
allow for di↵erent subpopulations, or to modify the disease process.1

Underlying these compartmental models is the mass-action assumption, mean-
ing that a homogeneous population is assumed in which all individuals are con-
nected (Heesterbeek, 2005; Rusu, 2015; Wilson and Worcester, 1945). These lim-
itations have been tackled by working with networks which allow to weaken the
mass-action assumption, thus providing a better fit for the combination of popula-
tion structures and disease transmissions (Keeling and Eames, 2005; Meyers et al.,
2005).2

A strand of literature has been published regarding the influence of the network
structure on the percolation of the disease, meaning the spread of the infectious
disease in the population. In particular, attention has been put on analysing and
calculation the percolation threshold for di↵erent population structures. Concern-
ing small-world networks, the deduction of the epidemic threshold, for both bond
and site percolation, can be found in prior works of Newman and Watts (1999) and
Moore and Newman (2000). The network structure is decisive for the epidemic
threshold, which determines the onset of an epidemic. For complex networks,
Pastor-Satorras and Vespignani (2002) show that eradication of infections cannot
be achieved by random uniform immunisation of individuals. Analysing small-
world networks, Liu et al. (2015) confirm the crucial e↵ect of network structure on
the spreading of an infectious disease.3

1
The case of severe acute respiratory syndrome (SARS) serves as an example to model the infectious

disease with an additional exposed subpopulations as an interphase between the susceptible and the

infected state (SEI-models). Besides, certain diseases do not allow permanent recovery and the person

a↵ected joins the susceptible pool again. Examples include gonorrhoea or encephalitis, which are repre-

sented in SIS-models and do not comprise a recovered pool, or for instance the seasonality of influenza

is represented in SIRS-models (Dadlani, 2013).
2
Network models that are commonly utilised include random networks, lattices, small-world or scale-

free networks, amongst others (Keeling and Eames, 2005).
3
Liu et al. (2015) work with small-world networks that are created by randomly dis- and reconnecting

the edges in two lattice-structures. Especially for a smaller infection rate, reducing the distances of the
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Not only have network structures a significant impact on the range and trans-
mission of an infectious disease, but they enable a shift in perspective to focus
more on the individual agent with the related neighbourhood. Analysing the indi-
vidual agent by adopting a game-theoretical perspective, the calculation of payo↵s
from vaccination and infection are of significance.

Starting with the simple game-theoretical model in Bauch and Earn (2004),
they find that even minimal risks associated with a vaccination drive the uptake
levels below the eradication threshold, given that agents behave selfishly. In-
troducing evolutionary game-theory with social learning, the work of Bauch and
Bhattacharyya (2012) displays that these features allow for a better explanation
of the evolution of vaccine-scares, which is further analysed in subsequent works.
Analysing groups with di↵erent beliefs concerning vaccination decisions has gained
further interest. For instance, Liu et al. (2012) find that the presence of committed
vaccinators increases uptake of vaccines and avoids clustering of susceptibles for
agents relying on adaptive-learning.

Combining the game-theoretical perspective with network structures yields fur-
ther results that are important for epidemiology. Fu et al. (2010) show that agents
forming beliefs by relying on adaptive-learning in complex networks, arrive at sub-
optimal vaccination levels, which is exacerbated when the selection of successful
strategies is sensitive. Furthermore, the network structure has the potential to
increase uptake levels, while it may serve as a catalyst to vaccination refusal for
increases in vaccination costs. Shi et al. (2017) examine the e↵ects of complex
network structures on individual vaccine uptake in mixed strategies. Given an
increase of the relative costs of vaccination, they find that heterogenous network
structures preserve vaccination rates when compared to regular networks. More-
over, if only direct neighbours are considered, highly connected individuals are
likelier to vaccinate, compared to the case of neighbours of neighbours. (Shi et al.,
2017)

Especially, the work of Shim et al. (2012) motivates the approach that is em-
ployed in this paper. Providing a game-theoretical model of measles transmissions,
they analyse the e↵ect of perceived vaccine risks on uptake levels for a population
divided into vaccine-sceptics and -believers. It is confirmed that uptake levels are
lower if agents behave selfishly, which is more severe for vaccine-sceptics. More-
over, and of particular importance, they show that it is mainly the fraction of
vaccine-sceptics, as opposed to their discrepancy in assessing vaccine risks, which
drives reduced uptake levels. Especially the last finding is confirmed in Stegehuis
et al. (2016). By analysing hierarchical configuration models, formed by connecting
communities in networks, this work shows that the mesoscopic set of communities
has the main influence on percolations in networks.

networks significantly contributes to a stronger spread of the disease.
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3 Description of the Model

The general assumptions of our model are as follows:

• The infectious disease is modelled as a time-homogeneous Markov chain with
a finite state space according to an SIVR-process with ’vaccinated’, respec-
tively ’recovered’ representing the final or absorbing states with permanent
immunity. The population is assumed to stay constant.

• Agents are assumed to be rational utility-maximisers endowed with complete
information about their immediate neighbourhood. They decide in each time-
step whether or not to update their vaccination decision and hence if they
will get vaccinated employing a mixed strategy.

• When facing the vaccination decision, each agent samples the health status
of its direct neighbours and deduces the probability of infection during the
next epoch from the share of infected neighbours.

• The time-horizon of an agent is bounded, in the sense that only a certain
amount of time-steps is considered in the calculation of expected utility to
be maximised through the vaccination-decision.

• Agents have a group a�liation to either be skeptical (group: ’skepticals’) or
trust (group: ’trusters’) that vaccines are safe. The group membership of an
agent determines the subjective costs they assign to vaccination, while the
costs of infection are assumed to be equal between groups.

• The population structure is modelled as a small-world network, relying on
a Watts-Strogatz model. Two groups are assumed which represent small-
worlds on their own. These two networks are then combined assuming that
closeness in a group is larger than between groups.

Concerning the epidemiological part of our model, the spread of the disease in
the population follows an SIVR-process. Thus, the population is divided into (1)
susceptible (2) infectious (3) recovered and (4) vaccinated subpopulations. The
subpopulations are the same for the two belief-groups of skepticals and trusters.
Susceptible agents can transition to the infectious state, S ! I, by at least one
interaction with an infected, hence contagious, neighbour. Individual interactions
have probability � of infecting a susceptible agent, while the actual probability
of infection �k(t) depends on the number of infected neighbours. On the other
hand, the agent decides to vaccinate with probability pvacc(t) at time-step t and
the transitions occurs according to the rule S ! V . Infectious agents recover
by the probability �k with transition I ! R. Recovered, respectively vaccinated,
agents stay in their respective state which can be regarded as isomorphic with the
exception of how these states are reached. Both recovered and vaccinated agents
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are assumed to become fully immunised. A constant population is assumed in a
way that no entries, via birth, or exits, via death, are taken into account.4

With regards to the agent’s decision and infection propagation processes, the
work of Shim et al. (2012) motivated the modelling choices, which are partly
derived from their analysis. Still, the approach developed in the present work
deviates from it in several respects: First o↵, a discrete-time rather than continuous
time Markov process is used to describe disease dynamics. This choice is justified
both on simplicity grounds and because at least parts of the mechanism leading to
contracting a disease, such as meeting other agents, can be considered inherently
discrete events. Secondly, Shim et al. (2012) employ time dependent population
balances to derive steady state solutions to an endemic disease (measles), while the
decision to vaccinate newborns by their parents has long-term e↵ects. This leads
to the explicit modelling of birth-death rates in the population balances and the
use of infinitely long time horizons when calculating the agent’s expected utilities.
The large time scales associated with the decision to vaccinate also give credibility
to the assumption of complete knowledge of population-level information, such as
the global steady state incidence of measles which is likely available to parents who
decide to vaccinate their children. Finally, this game-theoretic setting is su�cient
for the existence of a Nash equilibrium which the authors derive for the diverging
vaccination policies of di↵erent social groups.

In opposition, in the present work it is attempted to describe an infectious
disease with short time scales of propagation and recovery, with characteristics
of an unexpected outbreak for which a vaccine could be readily available for any
individual independently of it’s age.5 Under these conditions it is not expected to
reach an endemic steady state but a mixture of immunised agents, either due to
recovery or to vaccination. Moreover, the e↵ective consequences of the decision
to vaccinate are assumed to be limited in time, and so agents should only have
access to information from their local social links and prior beliefs to evaluate the
costs involved. This implies that no Nash equilibrium can arise at the population
level, but rather a set of heterogeneous decisions under non-equilibrium conditions.
All in all, these are the reasons why birth-death terms in population balances are
omitted. Therefore, the time-horizon and knowledge of the infection prevalence
to each agent’s neighbourhood in the determination of their expected utility is
limited, and a network structure for the population rather than a well mixed
approximation is relied on.

4
A more detailed version of the SIVR-model can be found in Tornatore et al. (2014).

5
An empirical example satisfying the employed definition would be the H1N1 avian flu pandemic of

2009 (cf. Hancock et al. (2009), Neumann et al. (2009), or Smith et al. (2009), amongst others).
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3.1 Epidemic dynamics

The evolution of the states of agent k is summarised in the stochastic matrix Qk(t)
and the health-state probability vector xk(t). The disease-specific parameters and
transmission rates are outlined below:

xk(t+ 1) = Qk(t) · xk(t) (1)

and:

Qk(t) =

0

BB@

pk(S ! S) pk(I ! S) pk(R ! S) pk(V ! S)
pk(S ! I) pk(I ! I) pk(R ! I) pk(V ! I)
pk(S ! R) pk(I ! R) pk(R ! R) pk(V ! R)
pk(S ! V ) pk(I ! V ) pk(R ! V ) pk(V ! V )

1

CCA (2)

In particular:

Qk(t) =

0

BB@

1� �k(t) 0 0 0
�k(t) 1� �k 0 0
0 �k 1 0
0 0 0 1

1

CCA (3)

For infected agents, the probability of transitioning to a recovered state or
remaining infected does not depend on the spread of the disease nor can it be
influenced by a decision to vaccinate. Given the absorbing quality of recovered and
vaccinated states, this means that only susceptible individuals are active decision
makers in the population. For purely susceptible agents, the health probability
column vector:

xk(t)
0
=
�
1� pvacc, 0, 0, pvacc

�
, (4)

represents their state at time t after the choice of vaccination strategy.
As outlined above, � represents the probability for an agent of getting infected

by a single interaction. This parameter is assumed to be disease-specific, and thus
constant in value and independent of the agent’s state. The probability of infection
�k(t) for an agent interacting with it’s entire neighbourhood results:

�k(t) = 1� (1� �)nk(t), (5)

with the integer nk(t) representing the instantaneous number of infected neigh-
bours of agent k at time t.

3.2 Agent policy

A susceptible agent, being a rational utility-maximiser, faces the vaccination de-
cision by solving the optimisation problem:

max
pvacc

Uk(xk(t), T ), (6)
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where T represents the time-horizon of the agent. The expected utility function
takes the subsequent form, following the Bellman equation for a discrete-time
Markov process:

Uk(xk(t), T ) =
t+TX

t0=t

fk(t0) · xk(t0)

(1 + r)(t0�t)
, (7)

where fk(t) is the payo↵ row vector of agent k with:

fk(t
0 = t) =

�
0 0 0 �Cv,k

�
(8)

and:
fk(t

0 > t) =
�
0 �Ci,k 0 0

�
(9)

represent the immediate vaccination payo↵s, respectively the payo↵s per time step
as a result of infection. The di↵erent components of the perceived cost, among
others the market price of the vaccine and the expected side-e↵ects conditional on
the agent’s beliefs, are included in Cv,k. Besides, Ci,k captures the costs of infection,
including medical treatment expenditures, absence from work or reduced personal
well-being. Finally, agents discount the payo↵s of future events using a discount
rate r, which is assumed to be constant.

Even though the actual infection probability �k(t) is time dependent due to
fluctuations in the incidence of the disease in the population, it is assumed to lie
beyond the capabilities of any individual to simulate the entire social network for
an accurate prediction of its evolution. Instead, each susceptible agent makes a
point estimation �̂k and assumes it to be constant during the forward time-horizon
T :6

�̂k = �̂ · nk(t)

nk,T
= � · nk(t)

nk,T
, (10)

where nk,T corresponds to the agent’s total number of neighbours and �̂ being an
estimated probability of infection, based on knowledge of historical cases. Given
the characteristics of the disease, the estimation of �̂ is assumed to fit the actual
�, thus �̂ = �. The hypothesis of making a point estimation that is constant
during the forward time-horizon, amounts to treating the infection dynamics as a
stationary Markov chain at the agent level:

xk(t+ 1) = Q̂k · xk(t), (11)

6
The heuristic approach for the calculation is justified on the basis of bounded rationality, given the

outbreak characteristics of the disease. Especially, the following comes into play: While the disease

percolates in the population, so does the knowledge about the disease. An agent is informed about the

fact that a disease is spreading in the population as soon as any of the neighbours are infected, but

cannot derive probabilities regarding spreading rate and severity. Given bounded rationality, the share

of infected neighbours is the heuristic basis from which an agent derives the probability of infection.
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with:

Q̂k =

0

BB@

1� �̂k 0 0 0
�̂k 1� �k 0 0
0 �k 1 0
0 0 0 1

1

CCA (12)

Given that the evolution of a stationary Markov chain is independent of any ab-
solute time reference, without loss of generality (7) can be rewritten using t = 0.
Employing (11) and (12):

Uk(xk(0), T ) = fk(0) · xk(0) +
TX

t=1

fk(t) ·
 

Q̂k

1 + r

!t

· xk(0) (13)

In order to compute the power Q̂t
k, the matrix can be diagonalized:

Q̂k = R̂k⇤̂kR̂
�1
k (14)

And (13) can be rewritten as follows:

Uk(xk(0), T ) =

"
fk(0) + fk(t) · R̂k ·

TX

t=1

 
⇤̂k

1 + r

!t

· R̂�1
k

#
· xk(0) (15)

Finally, performing the required computations are obtained:

Uk(xk(0), T ) = �pvacc · Cv,k � (1� pvacc) · Cnotv,k (16)

where:

Cnotv,k = Ci,k ·
 

�̂k

�k � �̂k

!
·
"

TX

t=1

 
1� �̂k

1 + r

!t

�
TX

t=1

✓
1� �k
1 + r

◆t
#

(17)

Equation (16) is linear in pvacc, so it has only one global maximum which depends
on the relative cost of each decision. In particular, the preferred strategies are the
following:

pvacc = 0, for Cv,k > Cnotv,k

pvacc = 1, for Cnotv,k > Cv,k

pvacc 2 (0, 1), for Cv,k = Cnotv,k

(18)

Thus, agents follow a pure strategy for almost all values of Cnotv,k. Following
equation (18), it becomes clear that ceteris paribus a di↵erent vaccination strategy
will be chosen depending on an agent’s beliefs, manifested through di↵erent relative
values for Cv,k and Ci,k. In particular, it is expected that individuals skeptical
towards vaccines will preferentially decide not to vaccinate for a given �̂k and T ,
as they consider the costs to be higher than what individuals who believe in the
e↵ectiveness of vaccines do.
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3.3 Network structure

The hierarchical configuration model in Stegehuis et al. (2016) provides an orien-
tation for the model which is employed in this thesis. Adopting the two belief-
groups, these are identified as sub-communities of the whole population. Each
group is assumed to have a close intra-connection and a looser inter-connection.
A small-world model is employed by formulating Watts-Strogatz networks Watts
and Strogatz (1998) for every group, which are then connected as outlined below.

Each community G 2 {T, S} is a subset of the whole population N , G ⇢ N ,
with T representing ’trusters’ and S representing ’skepticals’. Furthermore,

g : N ! {1, 2}, g(i) 7!
⇢

1, i in group T
2, i in group S

(19)

indicates community-membership for an individual agent i 2 N . The groups
consist of a total of nG members, according to nG =

P
i2N pG(i) = pG(i)⇤n. With

n = kNk being the number of nodes in the total population N . Furthermore,
pG(i) defines the probabilistic group allocation for a node i to be assigned to
group m 2 {1, 2}, such that

pG(i) =

⇢
p1, i assigned to T
1� p1 =: p2, i assigned to S

, p1,2 2 [0, 1] (20)

and pG(i) is independent of the individual agent i.
The Watts-Strogatz graph for every group G ⇢ N is then built by taking into

account k(i), the number of nearest neighbours of i that i is connected to in a ring
topology. Following, the network is adjusted by looping over the edges in each
group, which are then rewired according to prew 2 (0, 1).

Thereafter, the two graphs are combined by adding an additional fraction of
the edges in both groups for any two members i, j 2 N, i 6= j, of di↵erent groups,
requiring g(i) 6= g(j). The amount of edges eadd is the fraction according to

eadd = a ⇤ eG = a ⇤
✓X

i2T

k(i) +
X

j2S

k(j)

◆
, (21)

with a 2 (0, 1), and

eG = (
X

i2T

k(i) +
X

j2S

k(j)), (22)

the total of edges in both groups. Any two members of di↵erent groups are then
randomly connected until the amount of added connections reaches eadd.
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4 Initial Setup and Baseline Parameters

The model described in the previous section contains a list of free parameters,
whose baseline values are summarised in Table 1 below and are used in all simu-
lations unless stated otherwise.

Parameter Value
r 0.01
T 10 days
� 0.05 day�1

� 0.05 day�1

Ci,T = Ci,S 1.0
Cv,T 0.01
Cv,S 0.05
k 8
↵ 0.3

prewiring 0.2

Table 1: Baseline values for the free parameters of the epidemic model

With respect to the parameters a↵ecting each agent’s decision process, the
value of � is specified assuming that a seasonal infectious disease would take an
average of 20 days to get recovered from, and T is chosen as 1/2 of this time
frame. For the current implementation of the model, no dependency of � on the
agent state was included, so that 8k : �k = �. Given that the decision process is
governed by the relative cost of vaccination to infection, the latter is fixed at a
reference value of 1.0 for both groups and only Cv was set to reflect their di↵erent
subjective costs. Finally, � was obtained from numerical experiments matching
the expected dynamics for a fully connected graph, corresponding to a completely
mixed population.

The parameters describing the network structure are set to describe a commu-
nity of citizens in a typical urban environment. In this regard, a value of k = 8 is
chosen for the number of nearest neighbours in both groups of a�liation as well as
a fraction ↵ = 0.3 for the proportion of links between the two belief communities,
in order to reflect di↵erences in interpersonal a�nity. The group population fre-
quency q was set to 0.5 as a baseline in order to have an unbiased reference from
which derive the sensitivity of the model output to variations in this parameter.

5 Implementation

All our calculations are carried out in Python. More specifically we used networkx
for creating the network, numpy for calculations and matplotlib to visualize the
results.
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The code is split up in three files. main.py forms the core of the simulation
and is the only file that should be executed. Also, all variables that characterize
the simulation and can be altered in main.py to obtain di↵erent results.

5.1 Creating the network

By executing main.py an object of type SmallWorldNetwork (defined in
small world network.py) is created. The parameters characterizing the network
are n, group percentages, k, change edge percentage and alpha defined at the
beginning of main.py.

n defines the total number of nodes in the network. This number is then split
up into di↵erent groups according to group percentages. For example, if n = 100
and group percentages = [0.2, 0.8] two groups are created. One with 20 nodes and
one with 80 nodes. For each of these groups a Watts-Strogatz model is created
using k and change edge percentage. In a Watts-Strogatz model each node is
connected to its k nearest neighbors. Then each edge is rewired with a probability
of change edge percentage.

After creating a model for each group, the individual groups are loosely con-
nected with a percentage alpha. In other words alpha ⇤ n nodes are connected to
both groups while all other nodes only share edges with nodes of the same group.

Thus, it is more likely to be connected to members of your own group but at
the same time groups are never completely isolated from each other.

In a last step the created network is populated with agents. Hence, for each
node an agent with the respective group type is created and stored in a list.
The initial health status (susceptible, infected or vaccinated) is derived from rates
defined in lim init infected and lim init vacci. Furthermore, each agent has a
certain age that is derived from a normal distribution using age mu and age simga.

Age is only included for possible extensions of the model in the future. It is
not being used in our model.

5.2 Simulating the agents’ behaviour

Almost all functions in main.py are responsible for visualizing the results. The
simulation itself almost entirely takes place in the Agent class defined in agent.py.

In our case every iteration represents a day in the agents’ life. The number of
days to be simulated is defined by the variable frames. Hence, every day the main
file loops over all agents in the network and thus calls the run function exactly
once (per day). Starting from the run function a number of other functions is
called that determine whether the agent is getting infected, recovers or vaccinates.
For the decision of vaccination the act function gathers the di↵erent values needed
in equation (16) to ultimately decide whether to vaccinate or not (equation (17)).
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6 Simulation Results and Discussion

For a higher share of trusters in the population, the amount of vaccinated agents
increases. This results is shown in Figure 1a and Figure 2a and is in line with
previous findings. Furthermore, an increase in the share of trusters yields an even
higher ratio of vaccinated trusters to vaccinated skepticals when a threshold value
of around pT = 0.7 is reached. With more trusters that the ratio sharply increases,
which is shown in Figure 1b and Figure 2b. Especially, for a higher connection
percentage between the communities, an even higher ratio can be found. These
findings can be explained along two lines. First, the vaccination ratio is higher
in the truster community by design. Thus, a higher share of trusters and more
vaccinated trusters face less vaccinated skepticals in general. Second, the more
vaccinated trusters are present in a community, the lower is the incentive for
skepticals to get vaccinated. Since the share increases, the incentive drops further
and based on this free-riding behaviour, the ratio jumps even higher. For the case
of the two communities being more closely connected, skepticals are on average
surrounded by more vaccinated individuals and the ratio is larger for a higher
connection probability ↵.

Analysing Figure 3 and Figure 4, it is shown that the uptake in vaccines re-
sembles an s-curve. Also, the uptake lags both the increase in infections and the
current number of infected, until this number peaks. By design, the outbreak is
small at the beginning, so the inventive to vaccinated exists only for a few individ-
uals, which allows the disease to spread particularly in the skeptical community.
Regarding the dynamics, the number of vaccinated agents surpasses the number
of current infectious cases for the models with T < 10, while the cases are mixed
for T = 10, and for T = 30 the opposite appears. This is in line with the update
times, which are quicker than the spread of the disease for T = {2, 5} and slower
for T � 10. Especially for T = 30, the update rate is too slow to keep pace with
the disease spread an an overwhelming majority of the population gets infected
during the epidemic season.

Regarding the cost-perspective, the employed model confirms findings of previ-
ous research and is in line with the theoretical model, since higher costs reduce the
uptake levels for both communities. But comparing the e↵ects of costs in Figure 3
and Figure 4 to the e↵ects of di↵erent shares of trusters, cf. Figure 1a and Figure
2a, in the community yields more remarkable results. The uptake levels are more
sensitive to the share of trusters in the community, compared to the cost-ratios
of the individual communities. Interesting are the cases of Figure 3e and Figure
4a, where the costs are too low for the forecast-period. Thus, the vaccine uptake,
for the agents facing a decision, overtakes the infections and the pandemic is con-
tained. On the other hand, for Figure 3h and Figure 4h, the costs are too high
and the disease reaches an overwhelming majority of the population.

Furthermore, the cost sensitivities of both groups is confirmed in Figure 5a
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and Figure 5b. But of special interest is the following: In the truster community,
agents are more likely to stay healthy throughout the outbreak, even if they do
not vaccinate. While in the community of skeptical agents, this sort of free-riding
behaviour does not pay o↵ for the individual and results in most of the cases in
getting infected. So even if the agent is willing to get vaccinated (’truster’), it
might not be necessary at all if the neighbourhood consists mainly of agents that
contribute to the prevention of the spread of the infection.7

Among the assumptions of our current model that restrict the extent to which
our results can be extrapolated, is the statement that agents do not have memory
of past infections in order to learn a strategy with a long-term higher payo↵. This
assumption is justified referring to an unexpected outbreak for which no previous
experience can provide useful knowledge and/or immunity, in order to influence
the decision of an agent to vaccinate. Therefore, the probability of infection is
estimated exclusively through the current incidence of the disease in each neigh-
bourhood. Nevertheless, it is realistic to expect for agents facing an outbreak of
an infectious diseases like influenza to exploit their previous experiences of similar
outbreaks in the form of a prior probability of getting infected, even if the strain
is new and they lack immunity against it. One possible consequence of including
this e↵ect could be a higher baseline uptake for all behavioural groups, as the
maximisation of expected utility would lean toward taking vaccines without the
need for the buildup of a critical mass of infectious individuals to trigger it.

7 Summary and Outlook

Analysing the outbreak of an influenza strain in a population of two communities
that di↵er with respect to their beliefs regarding vaccinations, the obtained re-
sults are in line with previous research and add further interesting findings. The
model and simulations confirm the cost sensitivity of agents with regards to their
vaccination decision. It is shown that the time-horizon, in terms of updating the
individual decision, is crucial for the spread of an infectious disease. For agents
that update frequently, an outbreak of disastrous size can be prevented, which is
not the case for agents that rely on their initial decision for longer time-spans.
Increasing the share of trusters in the community significantly contributes to the
uptake levels of vaccinations. But especially, uptake levels are more sensitive to the
share of trusters in the community, compared to the cost-ratios of the individual
communities, which is of special interest for public health policies.8

The employed model serves as a baseline for future research on the e↵ects of
belief-groups on vaccination uptake in structured networks. Refinements along the
following lines should provide further contributions to existing research:

7
The dynamics of Figure 5a and Figure 5b are captured in mp4-files, which can be obtained from the

github folders.
8
As outlined in the Literature Review, compare Shim et al. (2012) and Stegehuis et al. (2016).
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Regarding the agent perspective, it is either proposed to work with a non-
binary coding of the groups, thus allowing for refined group-membership such that
di↵erent beliefs and cost assumptions can be accounted for. Otherwise, changing
the individual costs for infection or vaccination should result in changed SIVR-
dynamics. In addition, the agents should be individualised to a more specific
degree which adds more reality to the model. Especially, taking into account the
age-structure of the population should result in di↵erent costs of both vaccination
and infection, while it can be assumed that the disease-specific parameters change
as well. The employed model assumes a population that stays constant. While
deaths can be accounted for in the existing model, the case of including births adds
a more dynamic component in the spread and the modelling of the disease. Another
feature that would be added is the possibility of modelling endemic diseases.

Concerning the network perspective, analysing di↵erent network types will pro-
vide decisive results for early and targeted intervention measures in the public.
Working with dynamic networks that change over time, due to general demograph-
ical dynamics or resulting from agents’ behaviours, adds another feature that is
valuable for future research.
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Appendix

Figure 1: Average amount of vaccinated agents and vaccination ratio for various shares
of ’trusters’.

(a) Average amount of vaccinated agents (b) Vaccination ratio trusters to skepticals

Figure 1: Average amount of vaccinated agents for shares of ’trusters’: nT
n 2 [0.1, 0.9].

Averages are calculated over 20 simulations. Connection of groups with ↵ = 0.05

Figure 2: Average amount of vaccinated agents and vaccination ratio for various shares
of ’trusters’.

(a) Average amount of vaccinated agents (b) Vaccination ratio trusters to skepticals

Figure 2: Average amount of vaccinated agents for shares of ’trusters’: nT
n 2 [0.1, 0.9].

Averages are calculated over 20 simulations. Connection of groups with ↵ = 0.3
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Figure 3: SIVR dynamics for di↵erent costs of vaccination and di↵erent time-horizons.

(a) T = 2, Cv,S = 0.05, Cv,T = 0.01 (b) T = 2, Cv,S = 0.05, Cv,T = 0.02

(c) T = 2, Cv,S = 0.1, Cv,T = 0.01 (d) T = 2, Cv,S = 0.1, Cv,T = 0.02

(e) T = 5, Cv,S = 0.05, Cv,T = 0.01 (f) T = 5, Cv,S = 0.5, Cv,T = 0.1

(g) T = 5, Cv,S = 1.0, Cv,T = 0.1 (h) T = 5, Cv,S = 1.0, Cv,T = 0.5

Figure 3: SIVR dynamics for di↵erent costs of vaccination and di↵erent time-horizons.
Default parameters as follows: Cv,S = 0.05, Cv,T = 0.01, pS,T = 0.5, T = 5,↵ = 0.3.
Deviations according to the respective caption.



Figure 4: SIVR dynamics for di↵erent costs of vaccination and di↵erent time-horizons.

(a) T = 10, Cv,S = 0.05, Cv,T = 0.01 (b) T = 10, Cv,S = 0.5, Cv,T = 0.1

(c) T = 30, Cv,S = 0.3, Cv,T = 0.1 (d) T = 30, Cv,S = 3.0, Cv,T = 1.0

Figure 4: SIVR dynamics for di↵erent costs of vaccination and di↵erent time-horizons.
Default parameters as follows: Cv,S = 0.05, Cv,T = 0.01, pS,T = 0.5, T = 5,↵ = 0.3.
Deviations according to the respective caption.



Figure 5: SIVR dynamics for di↵erent costs of vaccination.

(a) Default (b) Cv,S = 0.25, Cv,T = 0.05

Figure 5: SIVR dynamics for di↵erent costs of vaccination. Default parameters as
follows: Cv,S = 0.2, Cv,T = 0.1, pS,T = 0.5, T = 5,↵ = 0.05. Deviations according to the
respective caption.
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